High-Energy Nuclear Collisions and the QCD Phase Structure

-- Recent Results from STAR Experiment

Nu Xu

- (1) Nuclear Science Division, Lawrence Berkeley National Laboratory, USA
- (2) College of Physical Science & Technology, Central China Normal University, China

Many Thanks to the Organizers!

Quantum ChromoDynamics

- 1) QCD is the basic theory for strong interaction. Its degrees of freedom are well defined at short distance.
- 2) Little is known regarding the dynamical structures of matter that made from q, g. E.g. the confinement, nucleon spin, the QCD phase structure... Large α_s and strong coupling QCD at long distance.

QCD in Twenty-One Century

1.5 HC SPS AGS SIS quark-gluon plasma quark-gluon plasma quark-gluon plasma Baryon Chemical Potential $\mu_{\rm B}/T_{\rm C}$

(1) Higgs Particle -

- Origin of Mass
- S.M. → The *Theory*

(2) QCD Phase Structure –

- Critical point, phase boundaries
- Confinement
- **x**_c symmetry
- Nucleon helicity structure
- ...
- Non-linear QCD
- ...
- Emerging properties
- ..
- String theory

The QCD Phase Diagram and High-Energy Nuclear Collisions

Phase Diagram: Water

Phase diagram: A map shows that, at given degrees of freedom, how matter organize itself under external conditions.

Water: H₂O

The QCD phase diagram:

structure of matter with quarkand gluon-degrees (color degrees) of freedom.

Outline

- (1) Introduction
- (2) New from of Matter at RHIC
- (3) RHIC Beam Energy Scan
- (4) Summary and Outlook

Relativistic Heavy Ion Collider

Brookhaven National Laboratory (BNL), Upton, NY

STAR Experiment at RHIC

(http://www.star.bnl.gov/)

Fundamental Science: particle physics, nuclear physics, astrophysics, cosmology, ...

State of Art Technology: detector R&D, simulations, IT, computing, mass/fast data managing, ...

- 550 scientists
- 53 institutes
- 12 countries
- ~ 150 PhD thesis completed since 2001

STAR Detectors Fast and Full azimuthal particle identification

Particle Identification at STAR

RHIC Physics Focus

Polarized *p*+*p* program

- Study *proton intrinsic properties*

Forward program

- Study low-x properties, initial condition, search for *CGC*
- Study elastic and inelastic processes in pp2pp

2020 eRHIC (eSTAR)

1) At 200 GeV at RHIC

- Study *medium properties, EoS*
- pQCD in hot and dense medium

2) RHIC beam energy scan (BES)

- Search for the QCD critical point
- Chiral symmetry restoration

2) New Form of Matter at RHIC

- Partonic collectivity of the medium
- Anti-matter formation

Anisotropy Parameter v₂

coordinate-space-anisotropy

momentum-space-anisotropy

$$\varepsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle} \qquad v_2 = \langle \cos 2\varphi \rangle, \quad \varphi = \tan^{-1}(\frac{p_y}{p_x})$$

Initial/final conditions, EoS, degrees of freedom

Partonic Collectivity at RHIC

Low p_T (\leq 2 GeV/c): hydrodynamic mass ordering High p_T (> 2 GeV/c): *number of quarks scaling*

- → Partonic Collectivity, necessary for QGP!
- → De-confinement in Au+Au collisions at RHIC!

Collectivity, Deconfinement at RHIC

- v₂ of light hadrons and multi-strange hadrons
- scaling by the number of quarks

At RHIC:

⇔ m_T - NQ scaling

⇔ De-confinement

PHENIX: PRL91, 182301(03) STAR: PRL92, 052302(04), 95, 122301(05)

nucl-ex/0405022, QM05

S. Voloshin, NPA715, 379(03) Models: Greco et al, PR<u>C68</u>, 034904(03) Chen, Ko, nucl-th/0602025 Nonaka et al. <u>PLB583</u>, 73(04) X. Dong, et al., Phys. Lett. <u>B597</u>, 328(04).

Comparison with Model Results

- \rightarrow Small value of specific viscosity over entropy η/s
- \rightarrow Model uncertainty dominated by *initial eccentricity* ε

Model: Song et al. arXiv:1011.2783

Low η/s for QCD Matter at RHIC

- 1) η/s ≥ 1/4π
- 2) η /s(QCD matter) << η /s(QED matter)

Antimatter Discoveries at RHIC

Light Nuclei Productions at RHIC

- In high-energy nuclear collisions, N(d) >> N(α):
 QGP → (anti)light nuclei via coalescence
- 2) In the Universe, $N(d) \ll N(\alpha)$: $N(anti-\alpha)$?

$J/ψ v_2$ Results

- (1) High statistics results
- (2) The value of v_2 for J/ψ is small
- (3) At RHIC, collectivity for charm quark is not as strong as light *u*, *d*, *s*-quark
- (4) STAR upgrade 'Heavy Flavor Track':

Summary I:

sQGP formed at Au+Au Collisions at 200 GeV

- (1) In high-energy nuclear collisions, hot and dense *matter*, with *partonic degrees of* freedom and collectivity, has been formed
- (2) The matter behavior like a quantum liquid with small η/s
- (3) Partonic matter \rightarrow antimatter: ${}^{3}\overline{H}$, ${}^{4}\overline{H}e$

What is the structure of the QCD matter?

3) RHIC Beam Energy Scan

- Phase boundary
- QCD critical point

Beam Energy Scan at RHIC

Study QCD Phase Structure

- Signals of phase boundary
- Signals for critical point

Observations:

- (1) v₂ NCQ scaling: partonic vs. hadronic dof
- (2) Dynamical correlations: partonic vs. hadronic dof
- (3) Azimuthally HBT:

 1st order phase transition
- (4) Fluctuations:
 Critical point, correl. length
- (5) Directed flow v₁
 1st order phase transition
- http://drupal.star.bnl.gov/STAR/starnotes/public/sn0493
- arXiv:1007.2613

Bulk Properties at Freeze-out

Chemical Freeze-out:

- Central collisions => higher values of T_{ch} and μ_B !
- The effect is stronger at lower energy.

Kinetic Freeze-out:

- Little energy dependence.

Observable*: NCQ Scaling in v₂

- $m_{\phi} \sim m_{p} \sim 1 \text{ GeV}$
- ss $\Rightarrow \varphi$ not K+K- $\Rightarrow \varphi$
- $\sigma_{\phi h} << \sigma_{p\pi, \pi\pi}$

In the hadronic case, no number of quark scaling and the value of v_2 of ϕ will be small.

* Thermalization is assumed!

STAR Collaboration

Particle and Anti-particle v_2 vs. $\sqrt{s_{NN}}$

STAR: Quark Matter 2011

Hadronic interactions are dominant

ϕ -meson v_2

The φ v₂ falls off trend from other hadrons at 11.5 GeV

Summary II: NCQ-Scaling in v2

- 1) Partonic collectivity in 200 GeV collisions
- 2) At $\sqrt{s_{NN}} \le 11.5 \text{ GeV}$ - $v_2(\text{baryon}) > v_2(\text{anti-baryon})$
 - → v₂-NCQ-scaling broken
 - **→** [hadronic] $\boxtimes \sqrt{s_{NN}} \le 11.5 \text{ GeV}$ [partonic] $\boxtimes \sqrt{s_{NN}} \ge 39 \text{ GeV}$

Where is the critical point?

Susceptibilities and Moments

Quantum

Number

Thermodynamic function:

$$\frac{p}{T^4} = \frac{1}{\pi^2} \sum_{i} d_i (m_i / T)^2 K_2(m_i / T) \cosh[(B_i \mu_B + S_i \mu_S + Q_i \mu_Q) / T]$$

The susceptibility:
$$T^{n-4}\chi_q^{(n)} = \frac{1}{T^4} \frac{\partial^n}{\partial (\mu_q/T)^n} P\left(\frac{T}{T_C}, \frac{\mu_q}{T}\right)\Big|_{T/T_C}, q = B,Q,S$$

Conserved

$$\chi_q^{(1)} = \frac{1}{VT^3} \left\langle \delta N_q \right\rangle$$

$$\chi_q^{(2)} = \frac{1}{VT^3} \left\langle \left(\delta N_q \right)^2 \right\rangle$$

$$\chi_q^{(3)} = \frac{1}{VT^3} \left\langle \left(\delta N_q \right)^3 \right\rangle$$

$$\chi_q^{(4)} = \frac{1}{VT^3} \left(\left\langle \left(\delta N_q \right)^4 \right\rangle - 3 \left\langle \left(\delta N_q \right)^2 \right\rangle^2 \right)$$

$$\frac{T^2 \chi_q^{(4)}}{\chi_q^{(2)}} = \begin{bmatrix} \kappa \sigma^2 \\ \frac{T \chi_q^{(3)}}{\chi_q^{(2)}} \end{bmatrix} = \begin{bmatrix} S \sigma \end{bmatrix}$$

Thermodynamic function ⇔ Susceptibility ⇔ Moments

Model calculations, e.g. LGT, HRG ⇔ Measurements

Non-Gaussian Fluctuations

N: event by event multiplicity distribution

$$m = \langle N \rangle \qquad \qquad s = \frac{\langle (N - \langle N \rangle)^3 \rangle}{\sigma^3}$$

$$\sigma = \sqrt{\langle (N - \langle N \rangle)^2 \rangle} \qquad \qquad \kappa = \frac{\langle (N - \langle N \rangle)^4 \rangle}{\sigma^4} - 3$$

For a Gaussian distribution, the s=0, $\kappa=0$. Ideal probe of the non-Gaussian fluctuations at critical point.

Higher order correlations are correspond to higher power of the correlation length of the system: **more sensitive to critical phenomena**.

Price: large number of events required.

First Results on High Moments

STAR: PRL, 105, 22302(2010)

Energy Scan in Au+Au collisions:

Run 10: 7.7, 11.5, 39 GeV

Run 11: 19.6, 27 GeV

- Centrality averaged events. In this analysis, effects of volume and detecting efficiencies are all canceled out.
- 2) ALL transport model results values are higher than unity, except the Theminator result at 200GeV. LGT predicted values around 0.8-0.9, due to finite chemical potential effect.
- Test of thermalization with higher moments.
- 4) Critical point effect: nonmonotonic dependence on collision energy.
- STAR: PRL105, 22302(2010).
- F. Karsch and K. Redlich, arXiv:1007.2581

Comparing with LGT Results

References:

- STAR, PRL105, 22303(10)
- Gavai and Gupta: PLB696, 459(11)

Assumptions:

- (a) Freeze-out temperature is close to LGT T_C
- (b) Thermal equilibrium reached in central collisions
- (c) Taylor expansions, at µ_B≠0, on LGT results are valid
 - \rightarrow Lattice results are consistent with data for 60 < $\sqrt{s_{NN}}$ < 200 GeV

Lattice: Phase Transition Temperature

Action	Temperature
Polyakov Loop	T _C ^{conf} ~ 170 MeV
Chiral Operator	T _C ^{Chiral} ~ 160 MeV
RHIC Data	T _C ^{Exp} ~ 175 ⁺¹ ₋₇ MeV
	$(T_{CH}^{Exp} \sim 160\pm 5 \text{ MeV})$

Sourendu Gupta, Xiaofeng Luo, Bedanga Mohanty, Hans-George Ritter, NX, *Science*, 332, 1525(2011).

Summary

- (1) In high-energy nuclear collisions, hot and dense *matter, with partonic degrees of* freedom and collectivity, has been formed
- (2) The matter behavior like a quantum liquid with small η/s
- (3) Partonic matter \rightarrow antimatter: ${}^{3}\overline{H}$, ${}^{4}\overline{H}e$
- (4) [partonic] $< \mu_B \sim 110-320 \text{ (MeV)} < \text{[hadronic]}$
- (5) Net-proton distributions are consistent with LGT results. QCD Scale: T_C=175⁺¹₋₇ (MeV)

Outlook:

(7.7, 11.5, 15.5, 19.6, 27, 39,62, 200 GeV)

Summary and Outlook

- 1) STAR at RHIC: Dedicated facility for studying matter with QCD degrees of freedom:
 - Properties of QGP
 - Sea quark and gluon contributions to proton helicity structure
 - QCD critical point, phase boundary
- 2) Future: EIC (eRHIC, 2022 ...)
 - Partonic structures of nucleon and nuclei
 - Dynamical evolution from cold nuclear matter to hot QGP

Phase Structures of QCD Matter